#!/usr/bin/env python
# coding: utf-8
# # Решение оптимизационных задач в SciPy (Версия для Python 3)
# In[1]:
from scipy import optimize
def f(x): # The rosenbrock function
return .5*(1 - x[0])**2 + (x[1] - x[0]**2)**2
print(f([1, 1]))
result = optimize.brute(f, ((-5, 5), (-5, 5)))
print(result)
print(optimize.differential_evolution(f, ((-5, 5), (-5, 5))))
import numpy as np
def g(x):
return np.array((-2*.5*(1 - x[0]) - 4*x[0]*(x[1] - x[0]**2), 2*(x[1] - x[0]**2)))
print(optimize.check_grad(f, g, [2, 2]))
print(optimize.fmin_bfgs(f, [#!/usr/bin/env python
# coding: utf-8
# # Решение оптимизационных задач в SciPy (Версия для Python 3)
# In[1]:
from scipy import optimize
def f(x): # The rosenbrock function
return .5*(1 - x[0])**2 + (x[1] - x[0]**2)**2
print(f([1, 1]))
result = optimize.brute(f, ((-5, 5), (-5, 5)))
print(result)
print(optimize.differential_evolution(f, ((-5, 5), (-5, 5))))
import numpy as np
def g(x):
return np.array((-2*.5*(1 - x[0]) - 4*x[0]*(x[1] - x[0]**2), 2*(x[1] - x[0]**2)))
print(optimize.check_grad(f, g, [2, 2]))
print(optimize.fmin_bfgs(f, [2, 2], fprime=g))
print(optimize.minimize(f, [2, 2]))
print(optimize.minimize(f, [2, 2], method='BFGS'))
print(optimize.minimize(f, [2, 2], method='Nelder-Mead'))
2, 2], fprime=g)) print(optimize.minimize(f, [2, 2])) print(optimize.minimize(f, [2, 2], method='BFGS')) print(optimize.minimize(f, [2, 2], method='Nelder-Mead'))